知识推理:基于图谱中已有的事实或关系推断出未知的事实或关系,一般着重考察实体、关系和图谱结构三个方面的特征信息。
可以很明显的看出,知识图谱并不是一次性生产的,而是一个慢慢积累的过程,需要使用大量数据不断的循环往复迭代更新。
知识图谱:有效提高性能
前文我们说起过,机器和软件不懂人类要什么,只能将信息大量的罗列,知识图谱的目的就是解决这个问题,而解决的方式,是让机器和软件获得“理解”和“解释”两个能力。
之所以要让机器和软件获得这两个能力,是因为目前人工智能的性能不能满足人们的需求。很多人都认为,只要有足够多的数据,人工智能就可以通过统计模型计算出一切。
但事实上,基于统计模型的人工智能只能寻找不断重复出现的模型,而不能寻找“有意义”的模型,它不能“理解”问题,得到的结果也无法“解释”。计算效果已经接近“天花板”,这样的人工智能通常都非常脆弱,容易受到攻击或者欺骗。
但是如果使用知识图谱,就可以让人工智能“理解”人类的自然语言,可以不断整合现有数据、外部数据,让机器形成认知能力,去理解这个世界。可以有效降低人工智能的大样本依赖,提高学习的经济性和对先验知识的利用效率,增强人工智能与先验知识的一致性。
另外,图式的数据存储方式,相比传统存储方式,数据调取速度更快,图库可计算超过百万潜在的实体的属性分布,可实现秒级返回结果,真正实现人机互动的实时响应。
知识图谱在金融领域的应用
金融机构在业务运行过程中累积了大量的知识与经验,这些知识与经验存在于该领域专家脑中或技术文档中,很难得到有效利用。在面对海量交易流水数据时,没有相应的知识与经验,难以有效追踪资金全链路流程,对可疑交易行为不能进行有效关联。
知识图谱则可以利用自身在实体、属性等客观世界事物的关联关系分析方面的优势,解决这些问题。《基于知识图谱技术的风险交易预警服务》和《基于知识图谱的外汇违法违规风险行为识别应用》两项金融科技创新应用就是基于这个优势。
以反洗钱为例,基于传统关系型数据库的反洗钱模型,知识图谱可根据汇款信息路径和客户信息反映出汇款异常或款项来源与实际收入不符等异常现象,从而发现洗钱风险,及时上报银行进行风险管控,并实现反洗钱数据可视化。
事实上,目前已经有银行、第三方支付机构落地了类似的项目。2020年4月,翼支付反洗钱图谱关联模型监测到一个以多交易主体为核心、大量交易对手组成的异常转账群组。该群组账户关系组成复杂、账户间相互转账频繁、群组内资金分散特征明显,图谱关联模型及时向反洗钱人员进行预警。
2021-07-09
2021-07-08
2022-12-20
2021-07-09
2021-07-05