金融行业拥有海量的高质量数据,同时存在部门之间、企业之间以及跨行业的数据共享需求,如何在保护隐私、保证数据不被泄露的情况下满足数据共享需求,目前来看,布局隐私计算是最优解。在金融机构管理提升、智能营销、智能风控等场景,隐私计算都可发挥有效作用。
金融机构数据共享的意义
数据作为国家基础性战略资源和关键生产要素,是经济社会发展的基础资源和创新引擎。金融行业作为数据的密集型和科技驱动型行业,实现数据资产的优化配置,是促进产业升级的关键因素。但金融数据普遍存在数据分布不均衡和数据信息不对称等问题,导致数据无法充分发挥其价值。数据共享机制能够打破数据壁垒和垄断,成为未来金融业发展的趋势和方向。
金融机构通过数据共享可以全面掌握客户的信息和需求,制定全面且精准的智能风控、智能营销,以及智能运营策略,为企业最大限度降低风控成本、带来更大的经济效益。同时,也有助于为用户选择定制化金融服务,提升客户体验。数据共享不是一蹴而就的,在数据流通和共享过程中,面临着诸多问题有待解决,主要包括数据权属不明确、确权手段尚缺乏,数据定价标准不统一、激励机制不健全、数据隐私易泄露、数据安全难保障,数据流通能力弱、数据汇聚效果差等。制定合理的数据共享规范,利用技术手段解决数据确权和数据安全等问题,对于推动数据安全共享、金融业高质量发展,具有重要的战略意义。
数据共享与隐私计算
目前国内大数据市场发展迅速,数据要素对经济的重要性明显提升。国家对数据监管制定的法律法规趋向严格化和全面化,2021年3月人民银行印发《金融业数据能力建设指引》行业标准,确立规范数据使用、用户授权、安全合规、分类施策、最小够用、可用不可见等规则。《数据安全法》提出国家对数据实行分级类保护、开展活动必须履行数据安全保护义务承担社会责任等。
数据的安全共享呼吁创新技术的支持,隐私计算技术可以在保证数据安全的情况下实现数据“可用不可见”,并且可以通过授权机制保证数据所有者的权益,在满足隐私保护的前提下实现数据价值变现,促进数据要素安全流通,为激活数据要素市场流动性提供了安全可靠的解决方案。隐私计算技术的发展还处于技术萌芽期,但是Gartner预测今年隐私计算将达到千亿市场规模,未来基于隐私计算的数据共享模型将得到迅速发展,成为数据安全共享的主要技术支撑。预计到2025年,全球将有一半的大型企业机构应用隐私计算技术于处理数据。
目前隐私计算技术的典型应用主要聚焦在金融和医疗等领域。在金融领域,隐私计算技术为跨机构、跨企业的数据安全共享和联合建模提供了有力的技术支撑,实现企业和机构间的智能风控、协同营销以及联合统计等应用,协助提升企业和机构的风控能力以及精准营销策略。
2021-07-09
2021-07-08
2022-12-20
2021-07-09
2021-07-05